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1 Introduction

This paper describes the problem of scheduling observations for an airborne telescope. Given a set of

prioritized observations to choose from, and a wide range of complex constraints governing legitimate

choices and orderings, how can we e�ciently and e�ectively create a valid 
ight plan which supports

high priority observations?
This problem is quite di�erent from scheduling problems which are routinely solved automatically

in industry. For instance, the problem requires making choices which lead to other choices later, and

contains many interacting complex constraints over both discrete and continuous variables. Further-

more, new types of constraints may be added as the fundamental problem changes. As a result of

these features, this problem cannot be solved by traditional scheduling techniques. The problem re-
sembles other problems in NASA and industry, from observation scheduling for rovers and other science

instruments to vehicle routing.

The remainder of the paper is organized as follows. In x2 we describe the observatory in order

to provide some background. In x3 we describe the problem of scheduling a single 
ight. In x4 we

compare 
ight planning and other scheduling problems and argue that traditional techniques are not
su�cient to solve this problem. We also mention similar complex scheduling problems which may

bene�t from e�orts to solve this problem. In x5 we describe an approach for solving this problem based

on research into a similar problem, that of scheduling observations for a space-borne probe. In x6 we

discuss extensions of the 
ight planning problem as well as other problems which are similar to 
ight

planning. In x7 we conclude and discuss future work.

2 SOFIA: The Observatory

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne

astronomical observatory. The facility consists of a 747-SP modi�ed to accommodate a 2.7 meter
telescope. Employing a suite of optical, infrared, and sub-millimeter instrumentation, the observatory

spans operational wavelengths of 0.3 to 1600 microns. SOFIA supersedes NASA's Kuiper Airborne
Observatory (KAO) - a modi�ed C-141 with a 0.9 meter telescope. SOFIA is expected to 
y an

average of 140 science 
ights/year over it's 20 year life time, double the previous rate of the KAO.
The combination of a factor of nine in telescope collecting area with an approximate factor of two

in aircraft 
ight rate establishes SOFIA as NASA's premier observatory for innovative astrophysical
instrumentation throughout the broad wavelength range of the facility. More details on SOFIA can be
found in [Bec97] and [ED97].

Building upon the KAO program, SOFIA provides astronomers with a research platform above

typically 99% of the earth's water vapor - a strong absorber of infrared radiation. The SOFIA telescope
is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20 to
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60 degrees of elevation. Most 
ights will originate and terminate at Mo�ett Field, CA; therefore, it is
necessary for the observatory 
ight plans close in on themselves. This typically requires an astronomical

observing plan covering both Galactic and extra-galactic targets.
SOFIA will support two di�erent types of instruments. Facility science instruments (FSIs) are

run by the observatory in support of General Investigators (GIs), whereas Principal investigator (PI)
instruments are run by University or Government laboratory groups. The KAO handled only PI type

instruments, and PI groups typically took responsibility for formulating science 
ights, running the
instruments, reducing, analyzing, and archiving their data. SOFIA facility instruments are developed
by PI lead institution but are delivered to and operated by the SOFIA science sta�. While a typical
KAO PI team might have half a dozen 
ights in a year for a single instrument, the SOFIA science
sta� is expected to have 3 - 4 facility science instruments to manage, along with the comparable (if

not larger) number of general investigator science programs. The scope of the 
ight planning problem
for supporting GI observations with the anticipated 
ight rate for SOFIA makes the manual approach
for facility instruments daunting. The application of automated scheduling tools to a well understood
(albeit complicated) astronomical 
ight planning problem seems extremely attractive.

3 Planning for a Single Flight

In this paper, we advocate automating the process of 
ight planning in order to successfully meet
the challenges of scheduling GI observations. There has been considerable success in automating the

scheduling of jobs in a wide variety of industries with many di�erent types of constraints. However,

these problems are typi�ed by relatively simple, homogeneous constraints, and the successful approaches

depend on these simple representations.

The elementary problem for an airborne observatory like SOFIA is the Single Flight Planning

Problem (SFP). This problem consists of constructing a good 
ight plan for a single 
ight on a given

day. The problem input consists of the set of observations that have been requested, the constraints

peculiar to the 
ight environment, and the objective function. As we shall see, this problem is too

complex to be solved using traditional scheduling techniques.

3.1 The Observation Requests

An observation request consists of the name of the object to be observed, the amount of time requested,

the relative importance of the observation, and a set of constraints on the observation. For now, we
assume that the amount of time is �xed and also that it is strictly less than the maximum duration

of the 
ight. The importance or priority of the observation is a summary of several di�erent factors.

Some observations are naturally more interesting to the science community than others. However, due
to the limited duration of 
ights, it may be necessary to observe a target many times, and so it may

be more important to �nish a sequence of observations on a target than to start a new observation.
The most complex part of an observation request are the constraints on the observation. Some of

these constraints are explicitly given by astronomers, while others are implicit, due to the nature of
airborne observing. We now turn our attention to these constraints.

3.1.1 Ordering Constraints

Some observations may have explicit constraints on the order in which they are performed. For example,
instruments may need to be calibrated by observing particular objects before the primary observation of

interest is performed. In addition, the telescope may need to be tuned at the beginning and periodically
during the 
ight by observing objects with particular characteristics. High-precision tuning may require

observing the same object at multiple elevations, for instance. These requirements impose ordering
constraints on the observations that must be obeyed 1.

1While calibrations and setup operations are not strictly observations, for simplicity we represent them as such.
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3.1.2 Astronomical Constraints

Some objects may only be visible from certain positions on the earth at certain times of day. Thus,
there may be an earliest start time and a latest end time for completing a given observation request.
Astronomers may also provide explicit constraints on particular observations so that the data is of
high quality. For example, the astronomer may require that the object be su�ciently far away from

the moon or the sun, or that airmass or atmospheric water vapor is below a certain threshold. These
constraints also dictate when a target may be observed. In particular, minimizing airmass requires
observing at a higher altitude, and minimizing water vapor can be accomplished by observing at higher
altitudes or by observing further north [HB00].

3.1.3 Aircraft Constraints

SOFIA has complex constraints simply because it is an airborne observatory. Most objects appear to
move through the sky as time passes. Because the telescope has little horizontal 
exibility, the aircraft

must 
y a curved trajectory in order to keep objects in view. The wind speed, aircraft speed, and time
and position an observation is started dictate the trajectory and �nal location of the aircraft at the end

of the observation. Object visibility windows are further constrained by the limits on the telescope's

angle of elevation. Even though an object may be visible from the ground, it may not be visible from

the aircraft, either because it is too low or too high for the telescope to view. An object may sometimes

have multiple windows of visibility during a single 
ight. For example, it may pass above and then
below the maximum telescope elevation, requiring a choice of when to observe.

The aircraft must normally return to the airport it took o� from. Flight time is also limited by fuel,

requiring all observations to be done with enough time for the aircraft to return, from wherever it is, to

the airport. Finally, the aircraft's altitude is constrained by its weight, but the weight decreases over

time as fuel is consumed, so the aircraft can generally climb 2000 ft every two hours. These factors
can interact with constraints on airmass or water vapor to further limit the windows during which

observations can be made.

Figure 1: Visibility of an object during March 18, 2000 from Mo�ett Field. Note that time is given in
Universal Time, and that sunset and sunrise are marked.

Many of these constraints are demonstrated in Figure 1. This �gure shows visibility and heading

information for an object viewed from Mo�ett Field during March 18, 2000. The y axis shows the
heading the aircraft must 
y to keep the object in view. The direction changes over time, indicating
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that the aircraft must constantly turn to keep the object in view. The curves on the plot indicate
when the object is in view. No curve indicates the object is below the telescope's 20 degree minimum

elevation, while the dotted curve indicates the object is above the 60 degree maximum elevation. Notice
that the object passes below the minimum elevation and then returns to view then passes above the
maximum elevation and again returns to view. During any 9 hour period, there are at most two
windows of visibility for this object.

3.2 Flight Environment Constraints

In this section we discuss constraints derived from the environment on the day of the 
ight. One

important example of such constraints are airborne warning zones, commercial 
ight routes, and other
administrative restrictions on where the aircraft can 
y 2. Some 
ight environments may have fewer
such restrictions; for example, if the aircraft 
ies out of Hawaii or New Zealand, there will be fewer
such restrictions than 
ights over Nevada. Bad weather may constrain observations as well. While
cloud cover is usually not an issue at the altitudes where observing is likely to occur, turbulence can

a�ect the performance of the observations, and may increase observation time or have other e�ects on


ights. Wind speed and direction can also have an e�ect on a particular 
ight. The aircraft's ground

speed is directly a�ected by wind, and wind patterns change over time. Flight planners must take

these e�ects into account when doing planning.

3.3 The Objective Function

The �nal component of the SFP is the objective function, which is used to compare two candidate


ight plans. Within the con�nes of the single 
ight planning problem, the objective function can
range in complexity. A good 
ight contains as many high-priority observations as possible; hence a

good objective function might be to simply sum the priorities of the observations which are performed.

However, the aircraft might spend considerable time 
ying without observing, i.e. 
ying a dead leg.

Thus, the objective function may penalize dead legs explicitly. Astronomers may also prefer rather

than require that observations be done at various water vapor levels, that targets be observed when

they are far from the moon or other heavenly bodies, and so on. All of these preferences can then be
added to the objective function, resulting in a fairly complex measurement of the goodness of a 
ight

plan.

3.4 The Statement of the Problem

With all the components in place, we can now state the SFP: given a set of observations to perform, a

date to perform them, a description of the environment on that date, and the objective function, select
a (possibly proper) subset of the observations, a start time for each observation, a takeo� time, and
specify any dead-legs. The resulting 
ight plan should maximize the objective function and must not

violate any of the constraints. Figure 2 shows an example of a 
ight plan.

4 The Complexity of Flight Planning

Many e�cient scheduling techniques rely on special encodings of problems in order to deliver good com-
putational results. These techniques work only for simple constraints, such as equality and inequality or

simple combinations of resource and precedence constraints. For example, many scheduling problems
can be posed as linear programming problems, which can be solved in polynomial time [Lue84]. Many
other examples of clever encodings and algorithms exploiting them can be found in a recent text on

scheduling techniques [Bru98]. While these techniques are very powerful, the problems they can solve

2The KAO was not FAA certi�ed, which meant that trans-national 
ights required extensive paperwork. SOFIA will

be FAA certi�ed and will not have these restrictions.
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Figure 2: A 
ight plan. Each observation leg is marked with +s and labeled, while dead legs are

simple lines. Note that no restricted areas are indicated in this �gure; this 
ight plan is likely to cross

restricted areas over Nevada.

are limited, and a great deal of sophisticated modeling may be necessary to pose these problems in the

correct form.

As we have seen, any instance of the SFP is composed of a large number of complex, heterogeneous
constraints over both continuous and discrete variables. Even relatively simple versions of the SFP are

quite complex, consisting of geometric constraints, precedence constraints, mutual exclusion constraints

and temporal constraints, all in the same problem. While it may be possible to encode parts of the

problem in order to take advantage of e�cient algorithms, it is unlikely that we can �nd a good encoding

which will serve for all instances of the problem. Furthermore, over the lifetime of the observatory, other

constraints may be required to represent a 
ight planning problem. For example, new instruments may
have new constraints, and newly discovered objects may impose new constraints as well. The addition

of these constraints may invalidate any overly specialized representations and algorithms.

The SFP presents another challenge in the form of the size of the representation. In particular, it
is not known beforehand how many observations will be performed on any given 
ight, nor is it known

how many dead-legs will be required. Each choice made during the planning and scheduling of the


ight a�ects other choices later; for instance, choosing one set of observations makes it impossible to
choose others. Traditional scheduling techniques require all of these choices to be represented, along
with constraints which are triggered once the choice is made. Encoding all of this information results

in large representations; for an extreme example, we refer the reader to [KS96]. The problem only
becomes worse as the scope of the problem grows; thus, while it may be possible to encode a single

SFP, it may not be possible to encode an extended SFP because the encoding will not �t into the
computer's memory.

5 Automatic Generation of Flight Plans

In this section we describe a planning and scheduling paradigm which meets the requirements for
solving the SFP. This paradigm has been successfully implemented in the New Remote Agent Planner

[JMMR99], which is designed for use in space applications. We �rst discuss Dynamic Constraint
Satisfaction Problems, a general representation for problems like the SFP. We then describe procedural

constraints, which generalize constraints from mathematical relations to powerful, miniature programs.
We then describe an algorithm which uses these procedures to solve DCSPs.
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5.1 Representation

Constraint Satisfaction Problems or CSPs are a general representation which can be used to represent
many problems, including scheduling problems. A CSP consists of a set of variables, each of which has
an associated domain of legal values it can take on in a solution. In addition to variables, the CSP
contains a set of constraints, which restrict the legal assignments to sets of values. These constraints can

be extensional, in which all the legal assignments are listed, or intentional, in which legal assignments
are encoded as a simple mathematical relationship. A constraint is satis�ed if its variables are assigned
values which are permitted by the constraint. A solution to a CSP is an assignment of each variable
to a single value in its domain such that all the constraints are satis�ed.

The notion of a constraint is very general, and many real-world problems can be represented very

naturally with simple constraints. For example, [BF98] and [Nui94] both discuss various issues in
representing scheduling problems as CSPs. However, sometimes representations of problems using
simple constraints can become large and unwieldy. For instance, an enormous amount of space is
required to explicitly represent all of the possible time-location pairs when an object is visible. It is often
more e�cient to represent a constraint with a mathematical relation such as �. Procedural constraints
[J�96] generalizes this concept by formalizing the notion of a procedure which enforces a relation among

the variables of a constraint. A special form of procedural constraint called an elimination procedure is

permitted to get rid of any element of a domain that is provably not part of any solution to the problem,
given the information currently at hand. For example, an elimination procedure might eliminate all

observations as candidates for the next observation on a 
ight because the aircraft is almost out of fuel.
Procedures also are used to formalize the concept of decision variables. If a procedure is able to assign

values to a set of variables V �D given that all the variables in D have been assigned, then there is no

reason to search the values of variables in V �D. The variables in D are called the decision variables,

since those are the only variables over which search is performed. Continuous variables can be handled
by making sure they are not in the set of decision variables [JF99].

CSPs are capable of representing a large number of interesting problems. However, CSPs contain

no mechanism to express a preference between two solutions that satisfy all of the constraints. A

Constraint Optimization Problem or COP is a CSP which includes a mapping from a solution to the

real numbers. This mapping encodes the preferences between solutions which satisfy all the constraints.

It should be clear from the discussion of the SFP above that we can pose the SFP as a COP.
As mentioned above, representing the SFP may be unwieldy due to the large number of constraints

required to encode the conditional e�ects of all of the choices. An alternative representation is the

Dynamic Constraint Satisfaction Problem or DCSP. A DCSP is a sequence of CSPs, in which each

CSP is a modi�cation of the previous CSP in the sequence. A CSP C is said to be a relaxation of
a CSP D if C has fewer constraints, fewer variables or more combinations of assignments permitted
in its constraints. A CSP C is said to be a restriction of a CSP D if C has more constraints, more

variables or fewer combinations of assignments permitted in it's constraints. These ideas are formalized

in [JF99]. DCSPs provide a way to formally characterize how a problem changes over time, and require
less space since the impact of choices need not be encoded in a single representation of the problem.

5.2 Representing the SFP as a DCSP

In this section we describe how to represent the SFP as a DCSP. Let us assume that the problem
consists of a set of observation requests, and our task is to construct a 
ight for a particular day such

that the sum of the priorities of the observations performed exceeds a certain threshold. The durations

of the observations are �xed, but we will permit dead legs in this problem. For simplicity, we ignore
restricted zone constraints and arti�cially restrict the bearings of dead legs to the 4 cardinal directions,
and restrict dead leg 
ight duration to 5, 10, 15 or 20 minutes.

The variables for the problem will represent aspects of each 
ight leg. Every leg will have a duration

variable, and variables for the initial and �nal times and locations of the leg. Every observation leg
also has an object and a priority variable, while every dead leg has a bearing variable. The constraints
include those mentioned in x3, such as those imposed by astronomers, and by the problem instance
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itself. For instance, the constraint on the �nal ground location for an observation leg relates the initial
and �nal locations and times, the duration of the observation, and the celestial coordinates of the

object being observed. The constraint on the 
ight plan quality states that the sum of the priority
variables, however many there are, must exceed a constant. Similarly, the constraint on the 
ight plan
duration says that the sum of the leg durations, however many there are, must not exceed a constant.
We also require that no two consecutive legs can be dead legs.

At any given instant in the construction of the schedule, we have a CSP consisting of the variables
for the current set of legs and the constraints on those variables. However, it is not known beforehand
how many legs a particular 
ight will require. We do know, however, that the 
ight must consist of
at least 2 legs: one to take o� from the airport and one to land. Thus, the 
ight will initially consist
of two legs; the �rst will begin at the airport, the second will end at the airport. We must represent

steps taken in 
ight planning which add new 
ight legs to the 
ight plan. This is modeled using the
following variables and constraints. Each leg has associated with it two additional variables: Leg-x

and Leg-after-x. There are three legal values for these variables: dead-leg,obs-leg,home-leg. If variable
Leg-x is assigned the value home-leg, then the leg is connected to the leg which takes the aircraft home;
otherwise, a new leg of the appropriate type is instantiated. We also add constraints requiring that

the Leg-x variable can't be dead-leg or home-leg for observation legs, and that Leg-after-x = Leg-x+1.

Since consecutive dead legs are prohibited, we add a constraint which prohibits both Leg-x+1 and
Leg-after-x+1 from being dead-leg or home-leg.

Leg−After−5 = 
obs−leg

Leg−After 6 = 
{obs−leg, 
dead−leg, 
home−leg}

Equals Leg 5= 
obs−leg

Consecutive 
dead legs 
prohibited

Leg 6= 
obs−leg

Consecutive  
dead legs 
prohibited

Duration Duration

Flight 
time < 9 

hours

Duration 6= 
{0−9 hrs}

Other 
Durations

Duration  5= 
35 min

Figure 3: New variables and constraints of the DCSP after adding a new 
ight leg.

Figure 3 shows the evolution of a portion of the DCSP when a new leg is added. The variables
for leg 5 have all been assigned values which satisfy the various constraints between them. When the

variable Leg-After 5 is assigned the value obs-leg, this is a signal that the variables for a new leg, in
this case leg 6, must be added to the problem; these variables are Leg 6, Duration 6 and Leg-After

6, among others. In addition, the new constraints are inserted, among then that Leg-after-5 = Leg-6,
and the constraint enforcing Leg-after-6 can't be dead-leg or home-leg. Notice that the Flight time <

9 hours constraint actually must be modi�ed, because this constraint acts on the duration of the new
leg as well as the previously added legs.

Finally, we brie
y discuss how procedural constraints play a role in representing this problem.

Suppose that we have two high priority observations, one constrained to occur at the beginning of the

ight and one at the end of the 
ight. After specifying these two 
ight legs, we are left with a situation

in which the aircraft must 
y in roughly the same direction in order to connect these two legs together

and create a legal 
ight plan. An elimination procedure could check the remaining observations and
eliminate those that require the aircraft to 
y the wrong direction. Representing this type of implied
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constraint e�ciently is impossible using a simple representation.
As mentioned previously, procedures can also be used to handle continuous variables by making

certain they are not in the set of decision variables. For example, the end time and end location of
observation legs are determined fully by the start time, start location and object being observed. Thus,
there is no need to search over possible assignments to these continuous variables.

5.3 Solving CSPs

We now turn to methodologies designed to solve DCSPs. We begin with solving CSPs, then show how
the basic algorithm can solve DCSPs as well.

Backtracking search constructs a solution to a CSP by selecting a variable from the remaining
unassigned variables in a problem, then trying each possible value in turn. If at any point a constraint
violation is detected, the procedure returns to the previous variable binding, and tries another value.
If all the values of a variable are tried without success, then the procedure also returns to the previous
variable and tries another value.

This conceptually simple algorithm is guaranteed to solve a CSP or demonstrate that no solution is

possible. The worst-case running time for this procedure is the product of the sizes of the domains of

all the variables, which is exponential in the number of variables. Consequently, backtracking is only

feasible for CSPs with discrete domains. Backtracking can be easily modi�ed to solve COPs by saving

the value of the best solution found, and searching over all solutions instead of halting after �nding

the �rst solution satisfying the constraints. In essence, this is like imposing a new bound on solution
quality each time the old bound is improved upon.

The performance of this algorithm depends dramatically on functions which select the next variable

to choose, select the order to try values, perform fast inference to eliminate values from the domains of

unbound variables, and decide which variable binding decision is responsible for a constraint violation.

For instance, in the SFP, there is often a choice concerning which observation to make for a given
observation leg. Since the goal is to exceed a bound on the priority, a good choice might be to select

the remaining observation with the highest priority to try next. However, if this observation is too long

or takes the aircraft in the wrong direction, other observations will not be possible and a poor quality


ight plan will result. Consequently, modifying this choice by checking the direction the aircraft must


y may lead to better 
ight plans in less time. It should also be clear that using procedural constraints
to eliminate bad choices for variables can save time, since the algorithm does not need to guess these

values. These modi�cations are critical to good algorithm performance; for results on traditional

scheduling problems, see [BF98] and [Nui94].

It should be clear from the discussion of the constraints in x3 that 
ight planners must choose from

among several tradeo�s when scheduling 
ights. For example, an obvious tradeo� concerns whether
to try a high-priority observation �rst, or to try an observation of lower priority which may be easier
to schedule. Another tradeo� concerns when to schedule a particular observation. If the observation

is constrained by a minimum water vapor threshold, for instance, then this may be satis�ed by 
ying
higher or further north [HB00]. However, these both require making observations later in the 
ight;

care must be taken to ensure that the aircraft can still return home. Tradeo�s such as these drive
the construction of both variable and value ordering heuristics, which are necessary to ensure good

algorithm performance.
There are many other algorithms which can be used to solve CSPs. However, we only discuss

backtracking algorithms in the interests of space considerations.

5.4 Solving DCSPs

It requires very little e�ort to modify the standard backtracking algorithm to solve DCSPs rather than
CSPs. While standard backtracking guarantees that the set of variables and constraints is constant

during the solving process, a solver for a DCSP must contend with the possibility that new variables
and constraints are generated during the problem solving process. In Figure 4 we see that before
checking for constraint violations, we must generate the new CSP, P 0 from P . For instance, if we
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procedure CompleteSearchDCSP(P )
generate next CSP, P 0

if a constraint is violated return fail

if problem solved return success

select an uninstantiated variable V
for all values of this variable v 2 dom(V )
if CompleteSearch(P 0

[ V = v) == success

return success

end for

replace P 0 with P if necessary
return fail

end

Figure 4: Complete search.

decided to add a new 
ight leg, we would have to add the variables and constraints pertinent to this
leg to the CSP. In order to guarantee that this process terminates, we must be assured that we only

add a �nite number of variables to the problem instance in the worst case.

6 Related Problems

As mentioned in the introduction, SOFIA supports many di�erent instruments. Unfortunately, chang-

ing instruments is a lengthy job, which takes several hours to complete. Instrument changes will be

minimized due to the overhead required before installation, the time required to remove an instrument

and install another one, and the setup time for the new instrument on the airplane. This leads to an

extended 
ight planning problem: rather than just planning a single 
ight, a series of 
ights with the

same instrument must be planned. This problem includes constraints on which days the aircraft can

y; the aircraft will not 
y on holidays, routine maintenance must be performed, and astronomers may

not be available on some days. Additional no-
y constraints may be imposed by other observatory

operations, such as PI 
ights or special events such as comet impacts or supernova explosions.

The techniques we propose in subsequent sections can be used to address the extended problem as

well as the more limited SFP. However, we focus in the sequel on the SFP for simplicity's sake.
The SFP is similar to other problems important for both NASA and industry. For example,

the Vehicle Routing Problem (VRP) is the problem of delivering packages to various destinations

in an urban area. Typically, the problem features many trucks, with di�erent capacities and fuel
constraints, and many jobs with di�erent time windows, ordering constraints and priorities [KPS99].
This problem does not have the complex geometric constraints that the SFP features, but shares many

other similarities. Ordering constraints, package size, fuel constraints, truck capacity and distances

all interact to make for a complex scheduling problem. Scheduling operations for planetary rovers
[BGSW99] and inter-planetary vehicles [JMMR99] features the sequencing of science observations and
their enabling activities such as sample acquisition, as well as operations to aid in navigation as well as

re-charging operations. Visual spectrum science observations have constraints similar to astronomical
observations; in the rover domain, for example, there must be su�cient light available. Furthermore,

the total number of operations must be within the available power budget of the vehicle. Finally, path
planning in the rover domain and astronomical navigation feature complex geometric constraints which
may require simulation.
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7 Conclusions

The 
ight planning problem motivated by the SOFIA GI program is a complex one, with many het-
erogeneous constraints over a mixture of continuous and discrete variables. The resulting problem is
further complicated by the fact that the problem includes an uncertain number of steps and other con-

ditional constraints that can be very expensive to encode in a single problem instance. These factors
lead us to the conclusion that traditional scheduling techniques which solve simple scheduling problems
are, by themselves, likely to be inadequate. We instead advocate representing the problem as a DCSP
employing procedural constraints. This problem can then be solved by a complete search algorithm

using the procedural constraints to e�ciently eliminate possible assignments. Furthermore, this prob-
lem is similar to other problems which are important for NASA and industry to solve. Therefore, it
is worthwhile to address these problems and gain experience in solving them; only by doing so can we
ensure that SOFIA's choice will be made correctly.
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